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1. Introduction

The report by Staudinger in 1907 of the reactions of diphe-
nylketene (1) with benzylideneaniline (2), benzaldehyde, and
cyclopentadiene forming [2þ2] adducts 3–5, respectively, marked
not only the beginning of cycloaddition chemistry, but also that of
the chemistry of b-lactams.1 There was, however, little interest in
the preparation of b-lactams (2-azetidinones) for many years,
as these materials possessed no apparent utility. By contrast
b-lactones were useful for the preparation of alkenes upon
b-lactam chemistry for 60 years sin
ived the B.Sc. and M.Sc. degrees at t
e Indian Institute of Technology, K

d very extensively not only on b-la
rd for Excellence in Science Mento
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decarboxylation (Scheme 1), while cyclobutanones attracted
significant preparative and theoretical interest.

The b-lactam antibiotic penicillin was discovered by Fleming in
1928,2a,b although the appreciation of its seemingly miraculous
medicinal properties was rather slow to develop. However, once
these became known on the eve of World War II there was a great
effort not only to prepare large quantities of the drug using
biological processes, but also to elucidate the structure of penicillin
and to devise laboratory syntheses. The determination of the
b-lactam structure took the concentrated efforts of many of the
ce his doctoral studies at MIT from 1946 – 1950 with John Sheehan when the first
he University of Allahabad, India, and after postdoctoral work at Harvard University
haragpur, he joined the Stevens Institute of Technology, Hoboken, NJ, in 1959, and
ctams but also microwave-assisted synthesis and numerous other topics, and has
ring and the Lifetime Achievement Award of The Indian Chemical Society.
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Scheme 1. [2þ2] Cycloaddition reactions of diphenylketene.1
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world’s leading chemists, and this problem was solved by 1944,2c

with a major contribution from R. B. Woodward among others, as
has been described.2d Even with the full report of this effort in
19492c and the proof of the structure by X-ray by Dorothy Crowfoot
Hodgkin, there were still doubts, as expressed by Sir Robert Rob-
inson,2e regarding the b-lactam structure. He advocated ‘a proto-
nomer’ of the b-lactam which, ‘‘provides a simple relation between
the oxazolone and b-lactam structures. A pendulum-like swing
involves their interconversion.’’ He represented the structures as
shown in Figure 1, and the phrasing suggests a movement of atoms
between the structures.
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Figure 1. Proposed b-lactam ‘protonomers’.2e
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Scheme 3. Cephalosporin C and enantioselective synthesis of a carbacephalosporin
nucleus.
Methods for biological preparation of penicillin for clinical use
were already in wide use, but development of laboratory syntheses
followed a more tortuous path. The synthesis of a penicillin ana-
logue, the penam 9, by Sheehan and co-workers using the [2þ2]
cycloaddition of in situ generated ketene 6 with imine 7 forming
the precursor 8 was accomplished in 1950 (Scheme 2),2f confirming
Woodward’s prescient structural assignment, and showing the way
for the extensive future development of this reaction. The total
synthesis of natural penicillin V was completed by Sheehan in 1957,
but did not utilize a ketene cycloaddition.2g

The preparation and chemistry of b-lactams have been the
subject of frequent reviews,3 including not only [2þ2]
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Scheme 2. Synthesis of the penicillin analogue 9, and the structure of natural peni-
cillin V.
cycloadditions of ketenes with imines, but also other routes as well.
The use of b-lactams as synthons for a wide variety of further useful
products has also been extensively studied.3n The goal of the
current review is to consider recent work on the synthesis and
mechanism of b-lactam formation by [2þ2] cycloadditions of
ketenes with imines, especially those published since the last
update3d in 2003, and to consider some aspects in greater detail,
including the mechanism of the reaction, and the preparation of
bis(b-lactams).

The cephalosporins are another family of b-lactam antibiotics,
and the first example came with the discovery of cephalosporin
p by Guiseppi Brotzu from the sea near a sewer outlet in Caligari,
Italy, in 1948.4a,b This set off another chain of chemical in-
vestigations, with the elucidation of the structure of cephalosporin
C (10) in 1955.4c Woodward announced the first synthesis of
cephalosporin C in his Nobel award address in 1965,4d,e but this was
also not achieved using a [2þ2] cycloaddition. Analogs of 10 with
significant antibiotic activity have, however, been prepared using
b-lactam formation by ketene–imine reactions,4f–h including
enantioselective formation of the carbacephalosporin analog 10a
beginning with cycloaddition of a chiral ketene (Scheme 3).4h One
of the difficulties in this area is that cyclic imines usually form trans
products on cycloaddition with imines, but cycloaddition with an
acyclic imine followed by ring closure leads to the desired cis
product 10a.4h Stereochemical control remains a major concern in
b-lactam synthesis.
Ketene chemistry has been the subject of recent reviews,5a–c

and imines, or Schiff bases, are the other necessary components for
b-lactam synthesis by [2þ2] cycloaddition. These were first char-
acterized by Schiff in 1864,5d,e and have a multitude of uses, with
their role in b-lactam synthesis remaining as an essential part of
current synthetic and mechanistic chemistry. Ketene–imine
cycloadditions have also been extensively examined,3,5 with an
emphasis on variations in imine structure, including chiral and
cyclic imines.

2. Mechanistic studies

Early in the development of ketene–imine [2þ2] cycloadditions
forming b-lactams interest concentrated on the creation of syn-
thetic methodology, with little attention to the mechanisms of
these processes.3,6 With the appearance of the Woodward–Hoff-
mann selection rules governing cycloaddition reactions and the
realization that concerted [2þ2] cycloadditions are controlled by
orbital symmetry the question arose as to how this applied to
ketene cycloadditions.7 It was originally suggested that ‘it must be
concluded that those cycloadditions, which do occur in cases pro-
hibited by our selection rules for concerted reactions must proceed
through multistep mechanisms (e.g., formation of cyclobutane
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derivatives by dimerization of allenes and ketenes.)’.7a Upon
further consideration it was concluded that such concerted re-
actions were allowed by [p2aþp2s] mechanisms, but this was not
initially applied to ketene–imine cycloadditions.7c,d Mechanistic
study of ketene–imine reactions concentrated on the stereochem-
istry observed, and the results were somewhat contradictory, in
that in some cases reactions of aldoketenes (RCH]C]O) with
imines gave high selectivity for formation of the less stable cis
products, while in others mixtures of cis and trans products, or
even exclusively trans products were formed.3f An empirical
classification of the ketenes favoring different stereochemical
outcomes was devised, 3f grouped as Bose–Evans8a,b ketenes with
small substituents favoring formation of cis b-lactams, Sheehan2f

ketenes with medium sized substituents favoring cis products,
except for reactions with diarylimines forming trans products,
and Moore ketenes with large substituents favoring trans
lactams.3f,8c,d
2.1. Mechanistic studies of uncatalyzed ketene–imine
cycloadditions

b-Lactam formation by ketene–imine [2þ2] cycloaddition
presents many mechanistic problems, and is still far from being
completely understood. A recent report asks ‘‘The Mechanism of
the Ketene–Imine (Staudinger) Reaction in its Centennial: Still an
Unsolved Problem?’’9 Reaction occurs by both uncatalyzed and
catalyzed processes, and can follow complex mechanistic path-
ways, and even the involvement of ketenes in some examples is not
always certain. The first example was the uncatalyzed process
observed by Staudinger in 1907,1 and this and other early examples
of the uncatalyzed reaction generally used isolable ketenes such as
Ph2C]C]O or Me2C]C]O, which did not form stereoisomeric
products. Initial studies of the reactions of ketenes with vinyl ethers
found the reactions to be stereoselective, and ketene–alkene
reactions forming cyclobutanones were classified as concerted
reactions.7c–e,10

Kagan and Luche11 already in 1968 observed that competitive
reactions forming b-lactams 13 from diphenylketene (1) and imines
(11) were faster in the more polar solvent butyronitrile compared
to toluene, and that when MeOH was added after partial reaction
that a portion of the product was diverted to formation of 14. These
results were interpreted as showing the reactions were stepwise,
with the formation of zwitterion 12 (Scheme 4). In further com-
petition experiments, the reaction of 1 equiv of Ph2C]C]O (1)
with a mixture of 1 equiv each of PhCH]NPh (11a) and
4-MeOC6H4CH]NPh (11b) or 11a and PhCH]NC6H4OMe-4 (11c) in
toluene gave a preference for reaction 11b/11a and of 11c/11a of 2.3,
also consistent with preferential attack of the more electron-rich
and nucleophilic imine, and the formation of a zwitterionic
intermediate 12 in the reaction.11
11a, Ar, Ar1 = Ph
11b, Ar = 4-MeO-
C6H4, Ar1 = Ph
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Cycloadditions of more reactive monosubstituted ketenes,
which could form cis and trans products were, however, usually
carried out by in situ dehydrochlorination of acyl chlorides with
triethylamine in the presence of the imine, and these reactions
resulted in variable stereochemical results.8a The question arose as
to whether ketenes were always involved in these reactions, as
direct reaction of the acyl chloride with the imine was also shown
to occur in some cases, and this process could not always be
excluded as a path for b-lactam formation.8a

To circumvent these problems, reactions of unsymmetrically
substituted cyano ketenes 15 (R¼t-Bu, Me, Cl, Br, and I) generated in
situ by thermal reactions forming only inert byproducts were
undertaken.8c,d These reactions usually showed stereoselective
formation of products with a trans arrangement 18a of CN and H in
the product b-lactams (Scheme 5). The product 18b became sig-
nificant when R1 was a bulky group such as tert-butyl. This for-
mation of the more stable cycloadduct is counter to the usual
finding for concerted [p2sþp2a] reactions,7c–e while the stereo-
selectivity is unusual for a two-step mechanism. It was shown,
however, that zwitterions 17 generated independently also gave
products 18 with the same stereochemistry as the ketene–imine
reactions. Capture of the zwitterions with alcohols was also dem-
onstrated.8c,d Therefore, the results were interpreted in terms of
two-step reactions with stereoselective attack of the imine on the
cyano substituted side of the ketene forming zwitterionic
intermediates 17, which underwent conrotatory bond formation of
b-lactams 18 (Scheme 5).8c,d Further product studies of the ste-
reochemistry of such reactions have increasingly favored this
mechanism involving formation of initial zwitterions, which then
close to the product with conrotatory bond rotation.
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Experimental study of the mechanism with direct observation
during the course of ketene [2þ2] cycloadditions with imines is
made difficult both because the ketenes are often generated in situ
for reaction with imines, and also because the ketene reactions are
usually quite rapid. Photochemical generation of a ketene in a solid
matrix in the presence of imidazole at 10 K revealed the ketene IR
absorption at 2110 cm�1 together with the imidazole, and upon
warming to 140 K the ketene and imidazole absorption diminished
and an IR absorption appeared at 1635 cm�1, and was attributed to
zwitterion formation.12a In a pioneering study, reaction of the chiral
acyl chloride 19 with the imine 21 catalyzed by i-Pr2NEt gave cis
b-lactams 23 with a 23a/23b ratio of 1:4 (Scheme 6).12b The re-
action of 19 with i-Pr2NEt gave a strong IR band at 2120 cm�1

assigned to the ketene intermediate 20, and the reaction of 19 with
21 at different concentrations of i-Pr2NEt was monitored by IR at
�22 �C, with simultaneous observation of all reactants and prod-
ucts. It was found that there was an initial rapid formation of ketene
20, which reached a steady state, and that the consumption of 19
and 21 was concurrent with the formation of 23 and was first order
in the concentration of i-Pr2NEt (Scheme 6).12b No ketene was
formed when reaction was attempted using Et3N as the base, and
deprotonation of an acylamine intermediate was excluded by the
first order dependence on i-Pr2NEt concentration. The conversion
of 19 and 21 to 23 was interpreted as being exclusively through the
intermediacy of ketene 20, with initial nucleophilic attack of the
imine nitrogen on the ketene carbonyl forming intermediate
zwitterion 22, which closed to the products 23.12b
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Since kinetic studies of ketene–imine reactions are difficult to
carry out further such investigations have been mainly limited so
far to competition studies. The reaction is, however, amenable to
computational study. The first ab initio computations were repor-
ted in 1992 for the reaction of ketene (24) with methylenimine (25),
and at the HF/3-21G level the reaction was predicted to proceed by
an asynchronous but concerted reaction, contrary to experimental
results.13 However, computations at the HF/6-31G*//HF/6-31G* and
MP2/6-31G*//MP2/6-31G* levels found an initial twisted transition
state (TS1) giving a zwitterionic intermediate 26, which closes
through TS2 to b-lactam 27 (Scheme 7).13b Energies (kcal/mol)
relative to the reactants were 3.7 (TS1), 3.5 (26), 21.3 (TS2), and
�41.2 (27). Further AM1 computations in 1993 agreed that the
reaction was stepwise.14a Thus, the reaction was indicated to
proceed through an initial reversible nucleophilic attack by nitro-
gen on the carbonyl carbon forming a zwitterionic intermediate,
which passes through a higher barrier to the product in a strongly
exothermic overall reaction.
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Scheme 7. Computational studies of ketene–imine [2þ2] cycloaddition.
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A contrary view was presented13a,14b from computational
studies of the cycloaddition reaction of ketene (24) and methyl-
enimine (25), leading to 2-azetidinone (27) using RHF/3-21G and
IRC. This reaction was suggested to be concerted but non-
synchronous, taking place through a twisted transition state. Four p
orbitals were involved in this reaction, described as a ‘2�[1þ1]’-
type cycloaddition.14b The activation barrier was calculated to be
33.9 kcal/mol. Substituted derivatives were also studied.14b A
separate analysis of one center frontier-orbitals also supported
a concerted pathway for the ketene and methylenimine reaction,
but this was not compared to the stepwise pathway.14c Further
analysis suggested that the consideration of solvent effects favored
the two-step mechanisms, and that because of the strong basis set
dependence that care should be taken in interpretations, but that
the preponderance of experimental and computational evidence
favored the latter pathway.14d

Subsequent computational studies have supported the two-step
mechanism, and have concentrated on efforts to explain the ste-
reochemistry of the reaction. Computational studies indicate the
torquoselectivity of ketene–imine interconversion with b-lactams
parallels that seen in electrocyclization of 1,3-butadienes to cyclo-
butenes, with p electron donating substituents (F, Cl, OH, and CH3)
preferentially occupying the outer positions in the transition state
with conrotation to form cis products.15 For the reaction of
chloroketene with CH3CH]NH, the cis transition state in
dichloromethane was found to be favored by 11.57 kcal/mol at the
B3LYP/6-31G* level (Fig. 2).15b
Calculations at the B3LYP/6-31G* level indicated that for various
combinations of substituents, ketenes give stepwise reaction with
imines 16 with formation of zwitterions 30 followed by conrotatory
ring closure giving cis products 31, in agreement with experi-
ment.15 For reaction of these imines with acyl chlorides in the
presence of Et3N it was calculated that direct reaction of the acyl
chloride with the imine forming 32 took place, followed by chloride
addition to give 33 leading to enolate 34, and then intramolecular
SN2 reaction formed trans b-lactams 31 (Scheme 8).15b
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A mechanistic scheme derived using CASSCF and CASPT2
methods identified two directions of approach of ketene 24 and
imine 25 in the reaction, with a near coplanar arrangement of the
ketene and imine in the trans approach, and a 39.0� dihedral angle
between the two in the intermediate for the gauche approach
(Scheme 9).16 This was proposed as a useful method for more
detailed calculations, including substituent and solvent effects to
successfully predict the product stereochemistry.16
Steric effects also influence the stereochemistry of b-lactam
formation, and experimentally ketenes generated by de-
hydrochlorination of carbonyl chlorides with Et3N or dehydration of
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carboxylic acids at�78 �C reacted with imines 38 to form exclusively
cis b-lactams 31a when Ar ¼ Ph or 4-MeOC6H4, but with Ar ¼ 1-
naphthyl, 1-anthracenyl, 9-phenanthrenyl, 1-pyrenyl, and 6-chrys-
enyl these gave exclusively trans products (Scheme 10).17a In
a computational study of this reaction at the B3LYP(PCM)/6-
31þG*þDZPVE level,17b the reactivities were compared for N-aryli-
mines 38 (aryl¼ phenyl or 1-naphthyl) with methoxyketene (37) to
explain the divergent stereochemistry of the product b-lactams 40
(Scheme 10). Reactions of 37 with cis- and trans-38 were considered,
and it was concluded that for Ar ¼ 1-naphthyl that the lowest energy
pathway to the product 40 involved initial trans to cis isomerization
of trans-38 to cis-38, which added to ketene 37 giving zwitterion
anti-39 followed by conrotatory cyclization to form trans-40.17b The
highest barrier for the latter route was 0.7 kcal/mol less than that for
the path involving initial reaction of 37 with trans-38. For Ar ¼ Ph
the pathway with reaction of trans-38 leading to cis-40 had a lower
barrier than that leading to trans-40.
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Computational studies using the atoms in molecules (AIM)
method for the reaction of ketene (24) with vinylimine (41) found
concerted pseudopericyclic [2þ2] pathways to the more stable
b-lactam 42 and the less stable iminooxetane 43, although there
was a lower barrier for formation of 43 (Scheme 11).18 Further study
of the ellipticity changes in the reactions confirmed the previous
conclusions, and led to the introduction of new criteria for peri-
cyclic and pseudopericyclic reactions.18b
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Scheme 11. Computational studies b-lactam and iminooxetane formation.
Scheme 13. Selectivity in b-lactam formation.
The formation of b-lactams by the photolysis of metal–carbene
complexes in the presence of imines is a valuable synthetic method
that has long been the subject of mechanistic speculation. Irradia-
tion with visible light of the complex 44 was proposed to form the
ketene complex 44a, which in the presence of imine 38a gave the
b-lactam 31a as a cis/trans mixture (Scheme 12).19a A DFT study
using B3LYP/6-31G* level computations found a pathway for car-
bonylation of CH2]Cr(CO)5 (45) in solvent water forming the sol-
vated ketene complex (H2O)(OC)4Cr$CH2]C]O (46), which led to
a new complex 47 with the imine CH2]NH, and then the transition
state for [2þ2] cycloaddition which led to 48 (Scheme 12).19a Fur-
ther computational studies examined the photochemistry of
metal–carbene complexes in non-ketene forming reactions.19b
Systematic experimental studies of the mechanism of the
uncatalyzed formation of b-lactams have been carried out by Xu
and co-workers20 by determining the cis/trans product ratio as
a function of structural variation of the ketene as well as at both
positions on the imine. This work has been reviewed,20b and greatly
clarifies this process. To eliminate effects due to the presence of
reagents used in ketene formation these reactants were generated
by thermal Wolff rearrangements, which are clean reactions with
only N2 as a byproduct. In one set of experiments thermolysis of
phenylthio diazoacetate 49 was used for in situ generation of
phenylthioketene (50) in the presence of aryl substituted imines 51
to form cis/trans mixtures of b-lactams 52 (Scheme 13). The yields
of the products were determined by NMR analysis of the product
mixture, and the respective products were then separated by
column chromatography for identification.20 A linear correlation of
log(cis/trans) with the Hammett s constants was observed, with
a slope r ¼ 1.62, and r2 ¼ 0.98. The increase in percentage of trans
product as the electron donor ability of the substituent at the imine
carbon increased was interpreted as indicating formation of
a zwitterionic intermediate, which was stabilized by the electron
donation and therefore had a longer lifetime, which allowed
isomerization to an intermediate, which could form trans product
(vide infra, Scheme 15).
The steric effect at the nitrogen substituent in imines
PhCH]NR1 was examined by reaction with ketene 50 and gave cis/
trans ratios of <2:98, 12:88, and >98:2 for R1¼Bn, i-Pr, and t-Bu,
respectively.20 The increase in cis product with increasing bulk
of the substituent paralleled earlier studies by Moore and
co-workers.8c,d

Substituted arylketenes 53 generated similarly from diazo ke-
tones reacted with imine 51 (R ¼ NO2) to give cis/trans mixtures of
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b-lactams 54, and these gave a linear correlation of log(cis/trans)
with the Hammett s constants with a slope r ¼ �0.63 and r2 ¼ 0.93
at 140 �C, and an estimated r ¼ �1.1 at 80 �C (Scheme 14).20 Elec-
tron withdrawing substituents R on the ketenyl aryl ring were
proposed to stabilize a zwitterionic intermediate permitting
greater conversion to the more stable conformation of the zwit-
terion leading to the trans product 54 (vide infra, Scheme 15).
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These reactions were interpreted as involving a mechanism in
which for the major product determining pathway the imine
approaches the ketene from the side opposite to the ketene sub-
stituent to form a zwitterion 55a, and this either undergoes direct
ring closure to form b-lactam cis-31 or isomerizes by bond rotation
to give intermediate zwitterion 55b, which undergoes ring closure
to trans-31 (Scheme 15). Electron donating ketene substituents R
and electron withdrawing imine substituents R2 destabilize the
intermediate zwitterion 55a, and favor direct ring closure forming
the cis b-lactam. Electron withdrawing ketene substituents R and
electron donating imine substituents R2 stabilize the zwitterions
55a, and increase the probability of isomerization to zwitterion
55b, thereby enhancing formation of the trans b-lactam. The
cyclization step was proposed to involve a nucleophilic attack of the
enolate on the imine moiety (vide infra, Scheme 17), and not an
electrocyclic reaction. The higher yield of cis product with in-
creasing bulk of the substituent on nitrogen was attributed to steric
hindrance in the intermediate 55b, which inhibits formation of this
intermediate leading to trans product.

Xu and co-workers,20 proposed that the conversion of 55a to
trans-31 did not occur by an electrocyclic disrotatory process
because analogous cis-cyclic imines 56 formed exclusively trans
b-lactams 57 in 99% yield by conrotatory processes independent of
their electronic character (Scheme 16), and therefore concluded
that ketene–imine cycloadditions all proceeded by conrotatory
processes, or by non-electrocyclic nucleophilic attack of the enolate
on the imine moiety, which is stereochemically equivalent
(Scheme 17).
Phenylthioketene (50) reaction in situ with N-aryl substituted
imines 58 to form cis/trans mixtures of b-lactams 59 was also
examined (Scheme 18). The effect of substituents R on the cis/
trans ratio was a small decrease in trans product with electron
withdrawing R groups, consistent with the intermediacy of a
shorter-lived intermediate.20
These results argue persuasively for a two-step mechanism for
b-lactam formation from [2þ2] cycloaddition of ketenes and imines
with approach of the imine from the side opposite to the larger
ketene substituent, and formation of a zwitterionic intermediate,
which may form the product by a conrotatory process (Scheme 15)
or the stereochemically equivalent intramolecular nucleophilic at-
tack (Scheme 17) with rate constant k2 (Scheme 15). If k2 is faster
than k�1 then the initial attack k1 is likely rate-limiting, with no
return to starting material. However, if the first step is reversible,
then 55a can undergo syn/anti interconversion, and k3 is likely to be
irreversible and rate-limiting, as reformation of the less stable
zwitterion syn-55a is unlikely, and ring closure to the trans b-lac-
tam will occur. There may be no need to propose torquoelectronic
effects (Fig. 2)15 in an electrocyclic ring closure, as direct
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nucleophilic attack can explain the results (Scheme 17). Stabiliza-
tion of the zwitterionic intermediate prolongs its lifetime and
promotes isomerization and formation of a trans product.20

Comparison of b-lactam formation using ketenes generated
from diazo ketones by either photochemical or microwave induced
Wolff rearrangements and reaction with acyclic or cyclic imines
show that both processes give similar product compositions. The
results can be explained as involving zwitterionic intermediates
that can isomerize in some cases leading to trans products,
although side reactions are more likely in the photochemical
reactions.21a

A study of reaction conditions showed that the more polar
solvents toluene or acetonitrile modestly favored the formation of
trans relative to cis b-lactam product, a result attributed to stabi-
lization of the zwitterionic intermediate in the reaction, allowing
a greater degree of isomerization of the imine moiety, and leading
to the trans product.21b The presence of additives such as amine
salts did not significantly affect the product stereochemistry, and
neither did the mode of ketene generation.21b With ketene gener-
ation by dehydrochlorination the product stereochemistry was
affected by the order of addition of the reagents, and this was
attributed to the intermediacy of chloro amides 33 (Scheme 8) in
some cases.21b

The temperature dependence of the cis/trans selectivity in the
[2þ2] cycloaddition of ketenes with imines 50 forming b-lactams
60 has been examined (Scheme 19).22a The ketenes were chosen as
tending to favor trans b-lactams (Moore ketenes: 28, 29, 50, and
53a), or cis b-lactams (Sheehan and Bose–Evans ketenes: 6 and 36,
respectively), while imines 51a and 51b tend to favor cis and trans
b-lactams 60, respectively. Ketenes 28, 29, and 36 with imine 51a or
51b showed a change in the cis/trans product ratio from between
42:58 and 66:34 at 150 �C to between 91:9 and 100:0 at 40 �C,
while for ketene 6 with imine 51b the ratio varied from 4:96 to
87:13. Ketene 50 had ratios of 75:25 and 77:23 at 150 �C, with 73:27
and 70:30 at 40 �C, for imines 51a and 51b, respectively, with
a maximum near 110 �C of 90:10. In most cases the cis-selectivities
decreased with increasing temperature, a result that may be at-
tributed to increase in the rates of isomerization in the zwitterion.
In certain cases, increases in the selectivities were interpreted as
due to favorable p–p and p–p interactions between the ketene and
imine substituents, which increase the rate of direct ring closure
more than the rate of isomerization of the zwitterions.
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Reaction of ketenes 6 (R¼PhthN), 28 (R¼Cl), 29 (R¼Me), and 36
(R¼PhO) with the cyclic imine 56d formed only trans b-lactams 57
(Scheme 20). This result rules out the possibility that formation of
trans products at higher temperature is due to addition to the more
hindered side of the ketene, which would lead to cis b-lactams.22a

Ketene–imine cycloadditions enhanced by microwave irradiation
were found to show no significant difference in the stereo-
selectivity than the same reactions conducted at the same
temperature with thermal activation.22b
2.1.1. b-Lactams from silyl substituted ketenes
Ketenes bearing silyl substituents are remarkably less reactive

compared to other ketenes, and provide useful mechanistic insights
into reactions of ketenes with imines, which are normally too rapid
for convenient reactivity studies. Trimethylsilylketene (61) is
a unique isolable ketene that is quite unreactive, but does undergo
cyclization with the highly nucleophilic imine 62 to form 63
(Scheme 21).23 Tri(isopropyl)silylketene 64 reacted with imine 65
forming b-lactam 66 upon prolonged heating in a reaction pro-
posed to involve a stepwise process forming a zwitterionic in-
termediate, which closed to the product (Scheme 21).24
Ketene 68 generated thermally as an unobserved intermediate
from metal–carbene complexes 67 reacted in situ with imines 69
forming b-lactams 70 as 4:1 mixtures of cis/trans isomers (Scheme
22).25 Ketene 71 generated in situ by dehydrohalogenation in
refluxing heptane in the presence of imine 69a underwent [2þ2]
cycloaddition forming b-lactam 72 as a single isomer of unknown
stereochemistry (Scheme 22).26 In the absence of 69a, ketene 71
was identified as a product of this reaction by the IR absorption at
2114 cm�1 but could not be isolated (Scheme 22).26
Electrophilic catalysis was also used to activate 61, which in the
presence of BF3$OEt2 reacted with electrophilic imine 73 forming
b-lactam 74 as a 75:25 mixture of cis and trans isomers (four di-
astereomers) in 57% yield even at �50 to �30 �C (Scheme 23).27
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Examination of the reaction mixture by 13C NMR at�40 �C revealed
the presence of a BF3–imine complex and formation of the b-lactam
74, but no complexation of the ketene with BF3 was detected.
Computational studies at the B3LYP/6-311þG(d,p) level with in-
corporation of a solvent continuum for mechanisms involving BF3

complexation either with the ketene carbonyl or with the imine
nitrogen revealed that the lowest barrier pathway involved initial
N–C bond formation between the imine and the ketene carbonyl
carbon forming syn and anti intermediates, which converted to the
trans and cis products with barriers of 9.1 and 8.7 kcal/mol,
respectively, above the reactants (Scheme 23). Formation of the
imine–BF3 complex was calculated to be exothermic by 17.8 kcal/
mol, consistent with the observation of this intermediate by NMR,
but the lowest barrier for reaction of this complex with the ketene
was 26.7 kcal/mol, and it was concluded that this pathway was not
competitive.
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N-Silyl substituted imines have been found to react with ketenes
in a two-step process with an isolable azadiene intermediate,
which cyclizes to the product b-lactam as shown in Scheme 44
(vide infra).
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3. Steroselective b-lactam formation via ketene enolates

Ketene generation by dehydrohalogenation of acyl chlorides in
the presence of tertiary amines often involves the generation of
ketene enolates, which may be generated either by reaction of the
tertiary amine with a first formed ketene, or by deprotonation of
acyl ammonium ions formed by displacement of the halide by the
amine. As described above (Scheme 6),12 the presence of ketenes
has been proven in some cases by detection of the characteristic
ketenyl IR absorption, but in other examples the formation of
discrete ketene intermediates is not certain.

The use of electrophilic imines and nucleophilic tertiary amine
catalysts in b-lactam formation has been developed into a powerful
synthetic method. As shown in Scheme 24 the nucleophilic catalyst
adds to phenyl(methyl)ketene (75) forming the ketene enolate 76,
which reacts with the electrophilic imine 77 forming a further
intermediate 78, which cyclizes to the product 79. The greatly en-
hanced yields in the presence of nucleophilic catalysts shows their
efficacy in the procedure, while the variation in cis/trans product
ratios shows a strong influence of the catalyst in the second step of
the reaction.28

The cobalt carbonyl anion Co(CO)4
� from the catalyst cobalto-

cenium cobaltate (Cp2Co[Co(CO)4]) was also applied to reaction of
75 (Scheme 24) and for diphenylketene (1) with imine 77 (Scheme
25). No reaction was observed in the absence of the catalyst.28c

To extend the reaction to monosubstituted ketenes and their
derived zwitterions from amine additions the ketenes were
generated using a shuttle procedure in which tertiary amines
served as kinetic bases, along with the stoichiometric base
1,8-bis(dimethylamino)naphthalene (80, Proton Sponge) that
scavenges the HCl generated.28a,b The tertiary amine rapidly effects
the dehydrochlorination forming phenylketene (53a), and then
transfers the proton to the stronger base, with regeneration of the
catalytic base. Stoichiometric bases that react irreversibly include
NaH with 15-crown-5, K2CO3, and the polymer bound base BEMP,
which is a triaminophosphonamide imine bound to a polymer
support (Scheme 26). In some cases, 80 may react reversibly with
acyl chlorides so that the reactions proceed not by free ketenes but
by acylation of the tertiary amine by the acyl chloride and then
dehydrohalogenation.28d
The use of chiral amine catalysts such as benzoylquinine (BQ) as
the shuttle base to catalyze asymmetric reactions of the ketene,
together with the electrophilic cocatalyst In(OTf)3 and 1 equiv of 80
gave b-lactams 82 in very high yields, enantioselectivity, and cis/
trans ratios (Scheme 27).29 The use of In(OTf)3 significantly
increased the yields and based on a mechanistic analysis it was
proposed that the chiral catalyst formed zwitterionic ketene eno-
lates 81, which reacted with the imine 77, while In(OTf)3 catalyzed
the reaction by forming the imine complex 83.29 The bifunctional
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salicylquinine catalyst 84 was also prepared, and when complexed
with In(OTf)3 in a 1:1 ratio effectively combined the nucleophilic
and electrophilic functions in one molecule, and provided 82
(R¼Ph) in 90% yield, 99% ee, and 10:1 dr.29
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In reactions using 80 as the stoichiometric base, formation of
ketene enolate 81 and of 81a (Scheme 27) explains the observed
catalysis, but the available evidence does not require the formation
of free ketenes. In reactions halted after specified times by
quenching with HCl the yield of b-lactam product depended upon
the concentration of BQ, and increased by a factor of 3–5 in the
presence of 10 mol % In(OTf)3. That C–C bond formation giving in-
termediate 81a (Scheme 27) was a rate-limiting step in the process
was established by using PhCD2COCl as a precursor and comparing
product yields after quenching upon partial reaction with those of
a companion reaction using PhCH2COCl. The yield of the deuterated
b-lactam was higher, giving an inverse isotope effect k(H)/k(D)
value of 0.8, consistent with a slow step involving conversion of sp2

to sp3 hybridized carbon.29

When ketenes are first formed irreversibly from acyl chlorides
by reaction with stoichiometric bases before contact with tertiary
amines there is no doubt of their intermediacy. Ketene enolates
formed by addition of tertiary amines to ketenes are expected to
behave similarly to those generated by proton abstraction from acyl
ammonium ions.

Competition studies of the stereoselective formation of b-lac-
tams from reaction of acyl chlorides with bases in the presence of
benzoylquinine led to the conclusion that these reactions involved
formation of a zwitterionic benzoylquinine complex that reacted
with the imine to form the product.28d Experiments in which
phenylketene was generated by photochemical Wolff rearrange-
ment of diazoacetylbenzene in the presence of benzoylquinine gave
similar stereoselectivity in product formation, indicating that
free ketenes formed enolates, which gave similar selectivity to the
intermediates generated by acyl chloride dehydrohalogenation.28d

This procedure for b-lactam formation has also been adapted for
use using solid phase reactants in sequential packed columns
containing dehydrohalogenation reagents for ketene generation
and chiral catalysts.28d,30a For example, the ketene is generated in
the first column by stoichiometric reagents and flows into a second
column containing the chiral catalyst that induces cycloaddition,
and byproducts are scavenged in a further column.

In another example of catalytic stereoselective [2þ2] cycload-
dition phenoxyacetyl chloride in the presence of TMS-quinidine
(TMSQD) and imines 85 gave b-lactams 86 through the possible
intermediacy of in situ generated phenoxyketene (36) reacting via
the acyl ammonium enolate (Scheme 28).30b
Procedures using cinchona alkaloids as amine catalysts gave
a strong preference for the formation of cis b-lactams from mono-
substituted ketene derived enolate intermediates upon reactionwith
N-sulfonylimines. However, the achiral anionic nucleophilic catalyst
87 gave preferentially trans b-lactams 88 from imine 77 and ketene
enolates generated in situ from acyl chlorides and bis-1,8-(dime-
thylamino)naphthalene (80) (Scheme 29).30c This reversal in the
stereochemistry was attributed to a steric effect of the bulky cation.
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Reactions of disubstituted ketenes 89 with N-tosylimines
RCH]NTs (90a) catalyzed by the ferrocene derivative (�)-91
give stereoselective formation of cis b-lactams 93 (Scheme
30).31a,b
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Scheme 30. cis-Selective b-lactam formation from disubstituted ketenes and N-
tosylimines.
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Scheme 31. Nucleophilic catalysis of trans-selective ketene reaction with trifylimines.

N
N N

:

N
N N Ph+

BF4

Ph

96 97

Ph
O

N N

N

Ph +

_

98

Ph
KN(SiMe3)2

Ph
C O

Ph
1

H

N

O

100

90a

R N
Ts

Ph
Ph

R Ts

O

N N

N

Ph +

_

99

98

Ph Ph
R

N
Ts

-97

R Yield
(%)

R Yield
(%)

R Yield
(%)

Ph 93 2-Naphthyl 92 4-BrC6H4 89

2-Furyl 85 4-MeOC6H4 59 E-PhCH=CH 94

Scheme 32. Ketene–imine [2þ2] cycloaddition catalyzed by N-heterocyclic carbene
97.

N

O

syn-101

N

O

anti-10190a

R N
Ts

Ph
C O

i-Bu
+

89a

Et2O

i-Bu
Ph

Ph
i-Bu

R RTs Ts
+

N
N N

:

97

Ph

R syn:anti Yield (%) R syn:anti Yield (%)

Ph 68:32 89 4-BrC6H4 57:43 94

2-Naphthyl 63:37 89 E-PhCH=CH 76:24 72

2-Furyl 81:19 86
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By contrast reactions of ketenes 89 with N-trifylimines
RCH]NTf (90b) and catalyst (�)-91 preferentially formed trans
b-lactams 95. The reactions of 90a were proposed to occur with
initial catalyst coordination to the ketene, followed by C–C bond
formation between the imine and the ketene, while N-trifylimines
were thought to coordinate with the catalyst (�)-91 followed by
C–N bond formation with the ketene (Scheme 31).31c

N-Heterocyclic carbene (NHC) 97 generated by deprotonation of
the corresponding azolium salt 96 with potassium hexamethyldi-
silazide catalyzed reactions of diphenylketene (1) with N-tosyl-
imines 90a forming b-lactams 100 by [2þ2] cycloaddition.32 These
reactions are proposed to involve deprotonation of the salt 96 and
to proceed by attack of carbene 97 on the carbonyl carbon of ketene
1 forming an intermediate enolate 98, which adds the imine 90a
forming the intermediate 99, which gives the b-lactam 100 with
regeneration of the catalyst 97 (Scheme 32).

Ketene 89a reacted with imine 90a with catalysis by carbene 97
giving mixtures of syn/anti b-lactams 101 (Scheme 33).32
Chiral N-heterocyclic carbenes 102 or 103 formed by deproto-
nation of the corresponding triazolium salts catalyzed the
cycloaddition of diphenylketene (1) with imine 90a giving stereo-
selective formation of b-lactams 100 (Scheme 34).32
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Chiral N-heterocyclic carbenes 104 generated by deprotonation
of salts catalyzed the [2þ2] cycloaddition of ketene 89b with imines
11 forming b-lactams 105.33 The most effective catalyst proved to
be 104a, and mechanisms involving initial reaction of the catalyst
with either the ketene or the imine were discussed, and either may
be operative in different examples (Scheme 35). Arylalkylketenes
89 reacted with imine 11c with catalysis by carbene 104e forming
b-lactams 105a (Scheme 36).33
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Scheme 37. Silazide catalysis of ketene–imine reaction.
Metal hexamethyldisilazanes proved to be effective catalysts
for reaction of ketenes 89 with imine 90c in formation of b-lac-
tams 108 (Scheme 37).34 The reactions were proposed to proceed
by nucleophilic catalysis by the silazide forming intermediates
106, which react with the imines giving 107 leading to the
products.
3.1. Enantioselective formation of b-lactams using chiral
ketenes or chiral imines

Chiral substituents on the ketenes, or on either side of the imine,
have been used in recent studies of stereoselective b-lactam for-
mation from ketenes generated in situ by dehydrochlorination with
subsequent reaction with imines. For example, chiral ketenes 109
and 111 derived in situ from carboxylic acids react with imines 11
(Ar¼Ph, C6H4Cl) forming mixtures of cis b-lactams 110 and 112 in
65–71% yields with 4:1 and 1:1 diastereomeric ratios, respectively.
The higher diastereoselectivity for 109 was attributed to the prox-
imity of the side chain to the concave face of the sugar moiety
(Scheme 38).35
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The unobserved chiral ketene 114 derived in situ from the
(�)-ephedrine substituted acid 113 reacted by [2þ2] cycloaddition
with imines 16 giving b-lactams 115a,b, which were separated and
after cleavage and recovery of the chiral auxiliary gave optically
pure 116 or 117, in 84–90% yields (Scheme 39).36
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Scheme 41. Stereoselective reaction of ketenes with chiral imines.
The chiral ketene 118a generated in situ by dehydrochlorination
reacted with 1,3-diazabuta-1,3-diene 119 by [2þ2] cycloaddition
forming b-lactam 120 with>99.5% diastereomeric excess, although
the absolute configuration of the product was not determined
(Scheme 40).37 Chiral ketene 118b also gave stereoselective [2þ2]
cycloadditions with imines 122 forming chiral b-lactams 123 with
quaternary centers (Scheme 40).38

Chiral imines have been successfully applied in stereoselective
synthesis, and 125 derived from 1,4:3,6-dianhydroglucitol reacts
with ketenes 124 generated in situ by dehydrochlorination of acyl
chlorides with Et3N to give highly diastereoselective [2þ2] cyclo-
addition forming cis b-lactams 126 with 96–98% enantioselectivity
(Scheme 41).35

D-Glucose derived chiral imines 127 reacted with ketenes 124
generated by in situ dehydrochlorinations of acyl chlorides, and
formed cis b-lactams 128 with high diastereoselectivity by [2þ2]
ketene cycloadditions (Scheme 42).39

Dehydrochlorination of acyl chlorides 129 forming ketenes 130
with in situ capture by optically active 5,6-dihydropyrazin-2(1H)-
ones 131 gave fused trans oxopiperazino-b-lactams 132 with
complete control of diastereoselectivity (Scheme 43).40

Glycine derived ketenes 118 with chiral substituents generated in
situ by dehydrochlorination in toluene or other solvents reacted
with N-trimethylsilylimines 133 to give observable intermediates
134, which at reflux cyclized to a mixture of trans b-lactams 135 with
silyl migration (Scheme 44).41 These two-step cycloadditions were
also found to proceed with microwave assistance under solvent-free
conditions.42 Benzyloxyketene (124, RO ¼ PhCH2O) gave pre-
dominantly cis-b-lactams in cycloadditions with N-trimethylsilyl
imines, while benzoyloxyketene (124, RO ¼ PhCO2) favored trans-
stereochemistry.43

These reactions have been studied computationally, and silicon
migration was found to be concerted with N–C bond formation
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leading to 134, which then formed 135 as two trans diastereomers
in a conrotatory cyclization.41,44

N-Bis(trimethylsilyl)methylimines 137 reacted in situ with ke-
tenes 136 generated by dehydrochlorination to form b-lactams 138
in which the N-methyl group was subsequently functionalized with
displacement of the silyl substituents (Scheme 45).45

Polymer supported imine 139 gave cis b-lactams 140 with high
diastereoselectivities on reaction with ketenes generated by de-
hydrochlorination in solution, with removal of the b-lactams from
the resin with 3% CF3CO2H (Scheme 46).46a The use of polymer
supported synthesis using ketenes, including preparation of
b-lactams, has been reviewed.46b

Chiral N,N-dialkylhydrazones 143 reacted in situ with the ke-
tene 142 generated from the acid with Mukayama’s salt 141 and
i-Pr2NEt to give the trans-azetidin-2-ones 144 as single
diastereomers (Scheme 47).47a The formation of trans products was
in contrast to the cis-selectivity observed with benzyloxyketene,47b

and was interpreted as involving formation of a zwitterionic in-
termediate, which because of a steric barrier to conrotatory closure
to the cis-adduct instead underwent a C]N bond isomerization
before conrotatory closing to the trans product (Scheme 47). For
R2¼BnOCH2, the trans/cis ratio changed from <1:99 at room tem-
perature to 97:3 at 120 �C.47a

Imine 11b containing a chiral chromium tricarbonyl biaryl
complex as a substituent reacted with phenoxyketene (36) gener-
ated by dehydrochlorination forming the chiral b-lactam 145
(Scheme 48).48a Chiral chromium tricarbonyl complexed arylimines
146 reacted with phthalimidoketene 6 generated in situ from the
acyl chloride in completely stereoselective [2þ2] cycloadditions
forming b-lactams 147, with the absolute configuration shown
(Scheme 48).48b
3.2. Other b-lactam forming reactions

Diphenylketene (1) reacted rapidly at �78 �C with transition
metal substituted imine N-rhenaimine 148 by [2þ2] cycloaddition
forming b-lactam 149a (Scheme 49).49a The structure of the prod-
uct was confirmed by X-ray and examined by DFT computations.
Ferrocenyl-substituted b-lactams have been made using either
ferrocenylketenes to form 149b49b or ferrocenylimines to form
149c49c (Scheme 49).
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Scheme 46. Polymer bound chiral imines for b-lactam formation by [2þ2] cycloaddition.
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Ketenes generated in situ by dehydrochlorination of acyl chlo-
rides react with heteroarylimines 150 (Ar¼2-thienyl and 2-, 3-, and
4-pyridyl) with selective formation of cis-4-heteroaryl substituted
b-lactams 151 (Scheme 50).50
R
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Scheme 50. cis-Heteroaryl b-lactams by [2þ2] cycloaddition.
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Scheme 53. Formation of selenium substituted b-lactams by [2þ2] cycloaddition.
Ketenes generated by dehydrochlorination of acyl chlorides
reacted with fluoroalkylimines 152 forming fluorine substituted
b-lactams 153, while diphenylketene (1) by reaction in toluene at
reflux gave 154 (R1¼CH2CO2Me) in 22% yield (Scheme 51).51
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Chloroketene (28) generated in situ by dehydrochlorination
reacted with imines 155 forming b-lactams 156 in 1,4-dioxane
(Scheme 52).52
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Scheme 52. Arylazo substituted b-lactams by [2þ2] cycloaddition.
Mixed selenium and sulfur substituted imines 157 reacted with
ketenes generated in situ by dehydrochlorination forming b-lac-
tams 158 (Scheme 53). Two isomers were obtained in each case, but
their stereochemistry was not determined.53

Ketene reactions with cyclic imines give b-lactams containing
the ring structures of penicillins and cephalosporins, and there
has been continuing interests in these reactions. Oxygen-
substituted ketenes generated in situ by dehydrochlorination
reacted with phenanthridine (159) forming tetracyclic 2-azetidi-
nones 160 as single trans isomers (Scheme 54).54 However, less
reactive alkylketenes failed to react with 159. Reaction with
ketene 118b bearing a chiral substituent gave stereospecific for-
mation of 160.54
Alkenylketenes 161 generated by in situ dehydrohalogenation of
unsaturated acyl chlorides reacted with azatrienes 162 forming
azocinone derivatives 164 in reactions proposed to proceed by
[2þ2] cycloaddition forming b-lactams 163, which then underwent
Cope rearrangement (Scheme 55).55 The pathway for the reaction
was studied by AM1 computations.

Polymer bound imines 165 reacted with vinylketene 161a gen-
erated by carboxylic acid dehydration with Mukaiyama’s reagent
141 to form polymer bound vinylazetidinones 166 (Scheme 56) that
were then subjected to solid phase olefin cross metathesis.56

Cleavage of the b-lactam from the resin gave the product in 32%
yield.

Ketenes 167 bearing electron withdrawing substituents were
generated in situ from carboxylic acids and 1,1-carbon-
yldiimidazole, and underwent [2þ2] cycloaddition with imines 16
to form b-lactams 31 (Scheme 57).57

Imines 168 reacted with oxygen-substituted ketenes generated
in situ by dehydrochlorination of acyl chlorides to give b-lactams
169 used in annulation reactions to form bicyclic systems
(Scheme 58).58

b-Lactams 171 prepared similarly from imines 170 and oxygen-
substituted ketenes were used to form annulated derivatives.59a

Chloro substituted b-lactams 173 were prepared from imines 172 in
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an analogous manner for conversion to alkenes, and alkenyl-
substituted b-lactams 175 were prepared directly from alkenyl
imines 174 (Scheme 59).59b
Phenylthioketene 50 generated in situ from the acid salt reacted
with imines 16 forming trans b-lactams 176 as the only observed
products, and these were utilized in further synthetic trans-
formations (Scheme 60).60

Thermal Wolff rearrangement at 80 �C without the need for rho-
dium catalysis also gave 50, which was used for in situ [2þ2] cyclo-
addition with cyclic imines forming b-lactams (Scheme 61).61 Imine
179 did not react with 50, while imine 180 gave a product from re-
action with the dimer of ketene 50. Yields were improved for re-
actions of less thermally stable imines by utilizing Rh2(OAc)4 catalysis.

Ketene 181 generated by catalysis with Rh2(OAc)4 showed sig-
nificant thermal stability in solution, and addition of imines to
solutions of 181 provides a route to b-lactams 182 substituted
with CO2Et groups (Scheme 62).62a Phenylthio imines 16a react
with oxygen-substituted ketenes giving cis/trans b-lactams with
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moderate selectivity, which were oxidized to N-sulfinyl and N-
sulfonyl derivatives (Scheme 62).62b

Aryloxyketenes 124 and ketenimines 184 generated together in
situ react by an aza-Wittig reaction in the same pot, providing
a route to alkyidene-b-lactams 185 (Scheme 63).63
3.3. Münchnone reactions

Amidoketenes 187 in equilibrium with Münchnones 186 are
formed by Pd-catalyzed reaction of acyl chlorides with carbon
monoxide and imines 16 and react in situ with excess imine
forming b-lactams 188 (Scheme 64).64 When 1 equiv of the imine is
used initially the amidoketenes 187 formed can react upon addition
of a second imine to form mixed b-lactams.64
4. Spiro lactam formation

Spiro b-lactams may be formed by [2þ2] cycloaddition between
ketenes and imines when one of the reactants has an exocyclic
functionality, and both exocyclic ketenes and imines have been
utilized. In an early example of the application of exocyclic imines,
reaction of ketenes 28 and 53g generated by in situ de-
hydrochlorination with imine 189a formed the trans spiro b-lac-
tams 189b (Scheme 65).65a The reaction of chloroketene 28 with
imine 190a has also been employed to prepare intermediates 190b
designed for use in the total synthesis of spirocyclic b-lactam
chartelline alkaloids isolated from marine sources (Scheme 65).65b,c

In related studies similar reactions were extended to formation of
bis(spiro b-lactams) (vide infra).65d

Ketene–isocyanide reactions have been known for more than
40 years, but the products were not completely elucidated.66a

Further investigation has revealed that at low ketene concentra-
tions, diphenylketene (1) reacts with isocyanides RN^C (191) in
two ways as illustrated66 where 1 in both cases reacts as a nu-
cleophilic component giving the intermediate 192, which reacts
further at lower concentrations of 1 and in the presence of
Me3SiCl in a second step in a net [3þ2] cycloaddition forming 193
(Scheme 66). Cyclization of 192 is also proposed to occur to
generate imine 194, followed by [2þ2] cycloaddition with 1
forming b-lactams 195.66 Ketenes serve two functions in these
multi-component reactions, and were classified as privileged re-
agents. Products 195b of acylation of enols of the ketone products
were also observed.

Exocyclic ketenes have also been exploited for formation of spiro
lactams, including 196 generated in situ by dehydrochlorination
reacting with imine 16 forming b-lactams 197 (Scheme 67).67 The
reactions were successful forming b-lactams with spiro chains with
5–7 carbon atoms in 57–70% yields, but not with three or four
atoms.67

Tetrahydrofuran-derived exocyclic ketenes 198 generated in situ
by dehydrochlorination formed spiro b-lactams 199 upon reaction
with imine 16 (Scheme 68).68 Imines bearing chiral substituents
gave high diastereoselectivities up to 95:5.68

Computational modeling of the reaction at the MP2/6-31þG*

level was also carried out with ketenes 198a,b reacting with the
imine 25 forming zwitterionic intermediates 200 (Scheme 69).68

These studies suggested that for ketene 198a there was a 3.4 kcal/
mol preference for imine attack on the side of the ketene syn to
oxygen, whereas for ketene 198b there was a 0.5 kcal/mol prefer-
ence for imine attack on the side of the ketene anti to oxygen. These



PhS

O
N2

benzene
80 °C

PhS
C O

49 178 (74%)

N

N

Ph
O

Ph

PhS

(177)

Imine Product Yield 
%

Imine Product Yield 
%

Ph

N
Ph

N

O

PhPh

PhS 98
N

R

R = Ph 

N

O

R

PhS 74

(96)a

(97)aPh

N
Bn

N

O

BnPh

PhS 85
N

R

R = 4-
MeC6H4

N

O

R

PhS 76

Ph

N
1-Naph

N

O

1-NaphPh

PhS 71

Ph

N
Bu-t

N

O

Bu-tPh

PhS 93

Imine Product Yield % 

N

O

R
N

O

R

OPhS

H

R = H      99 

       Me    99 

       NO2  98 

N

S

Ph

Ph

N

SPh

OPhS

Ph

70 (99)a

aYield with Rh2(OAc)4 catalyzed reaction at room temperature

N

SPh

N

SPh

CO2Me

179
180

Scheme 61. Phenylthioketene reaction with cyclic imines.

N. Fu, T.T. Tidwell / Tetrahedron 64 (2008) 10465–1049610482
formed b-lactams with preferences for conrotatory ring closure of
2.1 and 0.2 kcal/mol, respectively. This is in agreement with the
experimentally observed greater preference for formation of cis
product from 198a (Scheme 69).68

The reaction of chiral proline derived ketenes 201a,b with imine
11 (R1¼Ph, R2¼4-MeOC6H4) gave cis-stereoselectivity forming
lactams 202 in equal amounts (Scheme 70).69 Ketene 201c (R¼H)
reaction with the chiral imines 203 and 204 gave the corresponding
b-lactams with high cis-selectivity (Scheme 70).69 Reaction of 201d
(R¼MsO) with imines 11 forming 202 gave the product yields
shown in Table 1.70 Computational modeling of the reaction of an
analogue of 201c using DFT methods was also carried out for the
analysis of the observed stereochemistry,69 and in contrast to the
results for 19868 there was a preference for attack anti to the ring
hetero atom.

Spiro b-lactams 208 were obtained in 25–59% yields by reaction
of ketene 201c formed by acyl chloride dehydrochlorination with
formaldehyde imines (CH2]NR) generated in situ from triazines
207 (Scheme 71).71 The ketene was generated at �40 �C followed
by addition of the triazine and BF3$OEt2 to depolymerize the
triazine. The b-lactams 208 were resolved and used in further
syntheses.

Ketene 209 from in situ acyl chloride dehydrochlorination un-
derwent [2þ2] cycloaddition with imine 210 forming the b-lactam
211 in 43% overall yield (Scheme 72).72 The product was converted
to a totally synthetic b-lactam with activity in proteasome
inhibition.

Dehydration of the chiral 1,3-thiazolidine-2-carboxylic acid 212
with Mukaiyama’s reagent (141) generated ketene 213, which
reacted in situ with imines 214 by [2þ2] cycloaddition giving chiral
spiro b-lactams 215 and 216, which were separated by chroma-
tography. Cleavage of the thiazolidine groups in 215 and 216 gave
azetidine-2,3-diones (Scheme 73).73

Thermolysis of Meldrum’s acid derivatives 217 in the presence
of imines 16 resulted in the formation of spiro b-lactams 220 in
a process proposed to proceed by oxiranyl ring opening forming
dioxinones 218 as unobserved intermediates. These lost acetone
giving intermediate acylketenes 219, which reacted with the imines
by [2þ2] cycloaddition (Scheme 74).74

Dehydrochlorination of the glucose derived acyl chloride 221
formed the ketene 222, which reacted in situ with imines 16
forming b-lactams 223 and 224 in ratios near 7:3 (Scheme
75).75

5. Bis(b-lactams)

The possibility of cooperative effects from two therapeutic
functionalities in drug molecules, as well as the possible use of
these multifunctional substrates in further synthetic trans-
formations, has prompted interest in the synthesis of bis(b-lac-
tams). Syntheses of bis(b-lactams) have most often been carried out
from reactions of monoketenes with bis(imines), although there
have been recent studies involving reactions of the less accessible
bis(ketenes). Many different arrangements of the bis(b-lactam)
groups have been produced by different synthetic schemes.

In a pioneering example [2þ2] cycloaddition of in situ gen-
erated azidoketene (225) with the chiral imine 226 gave the two
diastereomeric azido-substituted cis b-lactams 227 as a 1:1
mixture (Scheme 76).76 These were separated and as shown for
227a converted to 228a, and repetition of the cycloaddition with
each of the separated diastereomers gave >99.5% stereo-
selectivity in formation of cis/cis-bis(b-lactams) 229, with a 74%
yield for 229a from 228a and 48% yield for the diastereomer
229b from 228b. Generation of the bis(b-lactam) 230a confirmed
that the stereoselectivity of ketene–imine cycloaddition was un-
affected by the N-substituent. Both cis/cis diastereomers of 230b
were formed similarly with high stereoselectivity. These bis(b-
lactams) all have an N1,C30 linkage from the nitrogen of one
azetidinone ring to C3 of the second azetidinone (Scheme
76).76a,b Preparation of bis(b-lactams) by coupling of two (b-
lactams) has also been reported.76c

The reaction of in situ generated oxygen and phthalimido
substituted ketenes with racemic imino-substituted b-lactam 231
formed cis,cis-bis(b-lactams) 232, and for R¼PhO this was sepa-
rated using a chiral column into the enantiomers in a 1:1 ratio,
showing the high stereoselectivity of the reaction (Scheme 77).77

Ketenes generated in situ reacted with optically active b-lactam
substituted azadienes 233 and gave diastereomeric cis,cis-bis-
(b-lactams) 234, which are linked by a chiral methylene group
between N1 and C40 (Scheme 78).78

Two equivalents of ketenes generated in situ in the presence of
methylene bridged bis(imines) 235 with initial reaction from 0 �C
to room temperature followed by increasing the temperature to
70 �C gave two diastereomeric methylene N1,N10 linked cis,cis-
bis(b-lactams) 236 (Scheme 79).79 Conducting the reaction with
1 equiv of ketene precursor from 0 �C to room temperature
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followed by addition of 1 equiv of a second ketene precursor and
increasing the temperature to 70 �C gave mixed bis(b-lactams).79

The products were also prepared containing 15N label as possible
Taxol analogue synthons.

One-step preparation of cis,cis-bis(b-lactams) 238 with a C4,C40

linkage was accomplished by reaction of bis(imines) 237 with ke-
tenes generated in situ by dehydrochlorination of acyl chlorides
(Scheme 80).80 Syntheses of 238 were also carried out by stepwise
processes. Base induced rearrangements of the bis(b-lactams) 238
gave fused cis,cis-bis(g-lactams).

A single diastereomer of bis(b-lactam) 240 with a C4,C40 linkage
was obtained by reaction of the chiral ketene 118b with bis(imine)
239 (Scheme 81).80b Reaction of ketenes with chiral bis(imine) 241
yielded the two isomers 242 and 243 (Scheme 81).80b Other optically
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pure bis(b-lactams) were obtained by two-step procedures with
initial preparation of imino-substituted monocyclic 2-azetidinones.

Reaction of chiral tartaric acid-derived bis(imines) 244 with
ketenes generated in situ gave bis(b-lactams) 245 linked by a two
carbon C4,C30 chain in 52–73% yields, with only minor amounts of
other diastereomers (Scheme 82).81 For R¼MeO the product was,
however, 246. These were hydrolyzed to diols, which were cleaved
to mono b-lactams.

Ketenes generated in situ by dehydrochlorination of acyl chlo-
rides reacted with dimethylene bridged bis(imines) 247 forming
N1,N10 linked bis(b-lactams) 248 as a mixture of cis/cis meso and DL
stereoisomers.82 The chiral ketene 250 generated by in situ acti-
vation of the acid 249 reacted with bis(imine) 247 forming the
bis(b-lactam) 251 in 93% yield as a single diastereomer (Scheme
83).82

1,2-trans-Bis(iminyl)cyclohexanes 252 reacted with an excess of
ketenes generated in situ to form meso and DL substituted bis-
(b-lactams) 253, with a preference for the meso-isomer (Scheme
84).83 The use of enantiomerically pure 252 (R1¼Ph) with 36
(RO¼PhO) led to the pure diastereomers of 253 isolated by chro-
matography. Reaction of 252 with 1 equiv of in situ generated 124a
gave formation of equal amounts of mono(DL-b-lactams) 254.83

Stereoisomeric bis(b-lactams) 256 were formed in a similar
manner from acylic 1,2-bis(imines) 255 by reaction with ketenes.83

The use of enantiomerically pure 255 (R1¼R2¼Ph) with 36 (RO¼
PhO) led to the pure diastereomers of 256 isolated by chromato-
graphy (Scheme 85).83

Phenoxyketene (36) generated in situ by dehydrochlorination
reacted with the bis(imine) 257 forming the bis(b-lactams) 258
with N1,N10 and C4,C40 linkages in 78% yield (Scheme 86).84 Re-
actions of 259, 261, and 263 with 36 similarly formed bis(b-lac-
tams) 260, 262, and 264, respectively.84 Reactions of 265 and 267
with 36 gave bis(b-lactams) 266 and 268 as mixtures of cis/cis di-
astereomers in a 58:42 dr.85
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Imine 269 derived from benzylisatin reacted with ketenes
generated in situ by Et3N dehydrochlorination of acyl chlorides in
CH2Cl2 from �10 �C to room temperature forming spiro b-lactams
270 in yields of 54–71% (Scheme 87).86 Similar reactions of bis-
(imines) 271 reacted similarly forming bis (spiro b-lactams) 272.65d
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An alternative approach to bis(b-lactam) synthesis utilized
photolysis of bis(carbene) complexes 273 in the presence of imi-
dazoline 275 to give bis(b-lactams) 276 as a 1:1 mixture of cis/cis
diastereomers in 55–68% yields. This reaction could formally have
proceeded through bisketene complexes 274, which reacted with
the imine functionality in a double [2þ2] cycloaddition leading to
the observed product 276, but stepwise processes may be involved
(Scheme 88).86 A number of other examples were investigated,
including those with poly(ethylene glycol) or hydrocarbon linkages,
and those from optically active imidazolines.87,88

Formation of bis(lactam) 280 by bisketene reaction with imine
279 may occur upon treatment of diacid 277 with Mukaiyama’s
reagent 141 to generate the formal bisketene 278 that reacted with
the imine (Scheme 89).89 The ketenyl groups are not formed
simultaneously and may be generated and react in a stepwise
fashion. Reaction of 278 with bis(imine) 281 formed a polymer with
b-lactams in the polymer chain.89

Bisketenes 282 are generated by photochemical Wolff rear-
rangement and directly observed by IR, and on reaction with imine
38a gave cis,cis-bis(b-lactam) 283 as a mixture of meso and DL iso-
mers (Scheme 90).90 1,2-Bisketenylbenzene (284) generated by
a dehydrochlorination procedure also gave mixtures of meso and
DLcis,cis-bis(b-lactams) 285, and 1,4-bisketenylbenzene reacted
similarly.90

1,2-Bisketenes 287 generated by photolysis of cyclo-
butenediones 286 reacted with imines 38, but formed aziridines
288 rather than bis(b-lactams) (Scheme 91).90 Computations in-
dicated that this reaction involved rate-limiting ketene–imine re-
action forming a zwitterion, which then closed to the product
aziridine.90

6. Ketene [3D2] and [4D2] cycloadditions with imines

Ketene reactions with conjugated imines have the potential of
undergoing not only [2þ2] but also [3þ2] and [4þ2] cycloadditions.
In a recent example 2-arylthiocarbamoyl benzimidazolium (289),
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imidazolinium (291), and triazolium (293) inner salts containing
1,3-dipoles react by [3þ2] cycloaddition with ketenes generated
either by in situ dehydrochlorination or by PhCO2Ag induced Wolff
rearrangement in highly site-selective processes to form benzimi-
dazoline-, imidazolidine-, or triazoline spiro-pyrrolidones in 58–
93% yields (Scheme 92).91 Stable trimethylsilylketene (61) reacted
with 289 giving an unstable adduct 290a, which lost the trime-
thylsilyl group upon chromatography giving 290b in 84% yield.
Computations at the B3LYP/6-31G(d) level for reaction of 291 with
Me2C]C]O suggest a stepwise mechanism is favored with nitro-
gen attack on the ketene carbonyl forming intermediate zwitterion
291a as a shallow minimum (Tables 2–4).91

Possible [2þ2] and [4þ2] cycloaddition pathways of
N-substituted 1,3-diazabuta-1,3-dienes 295 with ketenes have
been studied by DFT methods (Scheme 93).92 Initial nucleophilic
attack forming zwitterions 296 and subsequent ring closure to
b-lactams 297 and g-lactams 298 were analyzed, and the choice of
four- or six-membered ring formation was evaluated by the most
favorable electrostatic interactions. Cyanoketene reactions with
vinylimines also proceed by [4þ2] cycloaddtions in some cases.8c,d

[4þ2] Cycloadditions of ketenes and thioacylimines 299 both
generated in situ are catalyzed by O-trimethylsilylquinine (TMSQ)
to form enantio-enriched cis-4,5-disubstituted 1,3-thiazin-6-one
heterocycles 300 with 95 to >98% ee and cis/trans 95:5 to >97:3
(Scheme 94).93

Silylated vinylketenes 301 generated by either Wolff rear-
rangement or cyclobutenone ring opening reacted by [4þ2] cyclo-
addition with imines forming a,b-unsaturated d-valerolactams 302
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(Scheme 95).24 The intermediate products underwent de(trime-
thylsilylation) upon chromatography. Both stepwise reactions in-
volving zwitterions intermediates and concerted [4þ2] reactions
were considered as possible mechanisms for the reactions.

a-Bromo-a-alkenylketenes 303 generated by dehydrochlori-
nation of acyl chorides reacted in situ with imines 16 by [2þ2]
cycloaddition giving bromo-substituted b-lactams 304 (Scheme
96).94a,b Many side chain modifications of the products have been
carried out.94 3-Substituted alkenylketenes 305, however, reacted
by [4þ2] cycloadditions with imines 16 forming 3-bromo-5,6-
dihydropyridin-2-ones 306 (Scheme 96).95 Reaction with a chiral
imine proceeded stereoselectively.

Ketene generation with 1,8-bis(dimethylamino)naphthalene
(80) in the presence of benzoylquinidine (BQd) as a nucleophilic
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chiral catalyst and Zn(OTf)2 as an electrophilic catalyst and ortho-
benzoquinone diimides 307 as coreactants gave quinoxaline de-
rivatives 309 with >99% ee in all cases (Scheme 97).96 Ketene
enolates 308 are proposed as the reaction intermediates. Conver-
sion of the product 309 (R¼Et) to 310 by reduction was also
demonstrated.96

Ketene enolates 308 prepared as in Scheme 97 give enantiose-
lective reactions with ortho-benzoquinone imides 311 forming 1,4-
benzoxazines 312, which could be converted to a-amino acids
(Scheme 98).97 These reactions proceed by alkylation at nitrogen
and do not give amide products, and were found to be accelerated
by Lewis acids catalysts, especially Sc(OTf)3. A mechanism was
proposed involving nucleophilic attack of the ketene enolate on the
nitrogen of the catalyst activated ortho-benzoquinone imide.97b

Acylketenes 314 from furandiones 313 reacted with imines 16 to
give quinoxalines 315, while reaction with dicyclohexylcarbo-
diimide 316 gave 317 (Scheme 99).98
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Table 2
Ketene reactions with benzimidazolium inner salts 289a

R2, R3, Ar R, R1 Yield % R2, R3, Ar R, R1 Yield (%)

Bn, Bn, Ph Bn, H 91 n-Bu, Bn, Ph Me, Me 83
Bn, Bn, 4-ClC6H4 Me, Me 85 Bn, Bn, Ph CH2CH2Ph 66b

Bn, Bn, 4-MeOC6H4 Me, Me 85 Bn, Bn, Ph (CH2)5 90
4-ClC6H4Bn, 4-ClC6H4Bn, Ph i-Pr, H 58b Bn, Bn, Ph Bn, H 58b

4-ClC6H4Bn, 4-ClC6H4Bn, Ph Me,Me 87 Bn, Bn, Ph Me,Me 93
4-ClC6H4Bn, 4-ClC6H4Bn, Ph Bn, H 85 Et, Bn, Ph Me,Me 81

a Ketenes generated by dehydrochlorination unless indicated.
b Ketene generated by Wolff rearrangement.

Table 3
Ketene reactions with imidazolinium inner salts 291a

R2, R3, Ar R, R1 Yield % R2, R3, Ar R, R1 Yield (%)

4-ClC6H4Bn, 4-ClC6H4Bn, Ph Me,Me 85 Bn, Bn, Ph Me,Me 82
4-ClC6H4Bn, 4-ClC6H4Bn, Ph H, Bn 83 Bn, Bn, Ph (CH2)5 91

a Ketenes generated by dehydrochlorination unless indicated.

Table 4
Ketene reactions with triazolium inner salts 293a

R2, R3, R,4 Ar R, R1 Yield % R2, R3, R4, Ar R1, R2 Yield %

4-Tol, Ph, Ph, 4-ClC6H4 Me, Me 60 Ph, Ph, Ph, Ph Me, Me 71

a Ketenes generated by dehydrochlorination unless indicated.
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In an extension99 of earlier studies100 diphenylketene (1) gen-
erated in situ by dehydrochlorination of diphenylacetyl chloride
reacts with 1,2-dialkyldiaziridines (318) in benzene at 80 �C form-
ing b-lactams 321 (41%, R¼Et; 32%, R¼n-Pr) together with
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1,3-dialkylimidazolidines 322 (21%, R¼Et; 8%, R¼n-Pr).99a The
reaction was proposed to involve addition of the ketene to the
diaziridine forming zwitterions 319, which both cleaved to 320
followed by capture by 1 forming b-lactams 321, and also un-
derwent ring expansion forming 1,3-dialkylimidazolidines
322 (Scheme 100). Reactions of 1 or arylketenes 53 generated in
situ from �30 �C to room temperature with 318 gave only
1,3-dialkylimidazolidines 322 or 323, respectively (Scheme 100).99a

The reaction was also studied by computational methods.99b
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7. Ketene [2+2] cycloaddition with azo compounds

Ketene reactions with azo compounds (diazenes) forming aza-
b-lactams were reported by Staudinger in 1912,101a and a number of
examples have been reported.101b-f Recently the reaction of ketenes
89 with dimethyl azodicarboxylate (324) catalyzed by (-)-91 has
been found to give aza-b-lactams 325 in good yields and enantio-
selectivities (Scheme 101).101g The proposed mechanism corre-
sponds to that for ketene-imine cycloadditions (Scheme 30).31a,b
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8. Outlook

As the [2þ2] cycloaddition of ketenes and imines forming
b-lactams and related structures enters its second century of active
study the therapeutic and synthetic applications of this family
combined with the investigative creativity of chemists worldwide
guarantees a bright future for the study of this reaction. Many
further studies of bis(b-lactams) and spiro b-lactams, as well as
advances in both experimental and mechanistic study, may be
anticipated.
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